false
false
100

Contract Address Details

0x01F97A36917c2B76a43924368A97DcbD051A9a75

Contract Name
Tick
Creator
0xb92f34–1214fb at 0x3a6581–682b97
Balance
0 KAVA ( )
Tokens
Fetching tokens...
Transactions
Fetching transactions...
Transfers
Fetching transfers...
Gas Used
Fetching gas used...
Last Balance Update
11603193
Warning! Contract bytecode has been changed and doesn't match the verified one. Therefore, interaction with this smart contract may be risky.
Contract name:
Tick




Optimization enabled
true
Compiler version
v0.7.6+commit.7338295f




Optimization runs
1
EVM Version
default




Verified at
2023-12-18T14:39:26.936457Z

contracts/libraries/Tick.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0 <0.8.0;
pragma abicoder v2;

import "./LowGasSafeMath.sol";
import "./SafeCast.sol";

import "./TickMath.sol";
import "./LiquidityMath.sol";
import "./States.sol";

/// @title Tick
/// @notice Contains functions for managing tick processes and relevant calculations
library Tick {
    using LowGasSafeMath for int256;
    using SafeCast for int256;

    /// @notice Derives max liquidity per tick from given tick spacing
    /// @dev Executed within the pool constructor
    /// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing`
    ///     e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ...
    /// @return The max liquidity per tick
    function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) external pure returns (uint128) {
        int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing;
        int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
        uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1;
        return type(uint128).max / numTicks;
    }

    /// @notice Retrieves fee growth data
    /// @param self The mapping containing all tick information for initialized ticks
    /// @param tickLower The lower tick boundary of the position
    /// @param tickUpper The upper tick boundary of the position
    /// @param tickCurrent The current tick
    /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
    /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
    /// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
    /// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
    function getFeeGrowthInside(
        mapping(int24 => TickInfo) storage self,
        int24 tickLower,
        int24 tickUpper,
        int24 tickCurrent,
        uint256 feeGrowthGlobal0X128,
        uint256 feeGrowthGlobal1X128
    ) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) {
        TickInfo storage lower = self[tickLower];
        TickInfo storage upper = self[tickUpper];

        // calculate fee growth below
        uint256 feeGrowthBelow0X128;
        uint256 feeGrowthBelow1X128;
        if (tickCurrent >= tickLower) {
            feeGrowthBelow0X128 = lower.feeGrowthOutside0X128;
            feeGrowthBelow1X128 = lower.feeGrowthOutside1X128;
        } else {
            feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128;
            feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128;
        }

        // calculate fee growth above
        uint256 feeGrowthAbove0X128;
        uint256 feeGrowthAbove1X128;
        if (tickCurrent < tickUpper) {
            feeGrowthAbove0X128 = upper.feeGrowthOutside0X128;
            feeGrowthAbove1X128 = upper.feeGrowthOutside1X128;
        } else {
            feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128;
            feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128;
        }

        feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128;
        feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128;
    }

    struct UpdateTickParams {
        // the tick that will be updated
        int24 tick;
        // the current tick
        int24 tickCurrent;
        // a new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left)
        int128 liquidityDelta;
        // the all-time global fee growth, per unit of liquidity, in token0
        uint256 feeGrowthGlobal0X128;
        // the all-time global fee growth, per unit of liquidity, in token1
        uint256 feeGrowthGlobal1X128;
        // The all-time seconds per max(1, liquidity) of the pool
        uint160 secondsPerLiquidityCumulativeX128;
        // the tick * time elapsed since the pool was first initialized
        int56 tickCumulative;
        // the current block timestamp cast to a uint32
        uint32 time;
        // true for updating a position's upper tick, or false for updating a position's lower tick
        bool upper;
        // the maximum liquidity allocation for a single tick
        uint128 maxLiquidity;
    }

    /// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa
    /// @param self The mapping containing all tick information for initialized ticks
    /// @param params the tick details and changes
    /// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa
    function update(mapping(int24 => TickInfo) storage self, UpdateTickParams memory params) internal returns (bool flipped) {
        TickInfo storage info = self[params.tick];

        uint128 liquidityGrossBefore = info.liquidityGross;
        uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, params.liquidityDelta);

        require(liquidityGrossAfter <= params.maxLiquidity, "LO");

        flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0);

        if (liquidityGrossBefore == 0) {
            // by convention, we assume that all growth before a tick was initialized happened _below_ the tick
            if (params.tick <= params.tickCurrent) {
                info.feeGrowthOutside0X128 = params.feeGrowthGlobal0X128;
                info.feeGrowthOutside1X128 = params.feeGrowthGlobal1X128;
                info.secondsPerLiquidityOutsideX128 = params.secondsPerLiquidityCumulativeX128;
                info.tickCumulativeOutside = params.tickCumulative;
                info.secondsOutside = params.time;
            }
            info.initialized = true;
        }

        info.liquidityGross = liquidityGrossAfter;
        // when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed)
        info.liquidityNet = params.upper ? int256(info.liquidityNet).sub(params.liquidityDelta).toInt128() : int256(info.liquidityNet).add(params.liquidityDelta).toInt128();
    }

    /// @notice Clears tick data
    /// @param self The mapping containing all initialized tick information for initialized ticks
    /// @param tick The tick that will be cleared
    function clear(mapping(int24 => TickInfo) storage self, int24 tick) internal {
        delete self[tick];
    }

    struct CrossParams {
        // The destination tick of the transition
        int24 tick;
        // The all-time global fee growth, per unit of liquidity, in token0
        uint256 feeGrowthGlobal0X128;
        // The all-time global fee growth, per unit of liquidity, in token1
        uint256 feeGrowthGlobal1X128;
        // The current seconds per liquidity
        uint160 secondsPerLiquidityCumulativeX128;
        // The previous period end's seconds per liquidity
        uint256 endSecondsPerLiquidityPeriodX128;
        // The starting tick of the period
        int24 periodStartTick;
        // The tick * time elapsed since the pool was first initialized
        int56 tickCumulative;
        // The current block.timestamp
        uint32 time;
    }

    /// @notice Transitions to next tick as needed by price movement
    /// @param self The mapping containing all tick information for initialized ticks
    /// @param params Structured cross params
    /// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left)
    function cross(mapping(int24 => TickInfo) storage self, CrossParams calldata params) external returns (int128 liquidityNet) {
        TickInfo storage info = self[params.tick];
        uint256 period = params.time / 1 weeks;

        info.feeGrowthOutside0X128 = params.feeGrowthGlobal0X128 - info.feeGrowthOutside0X128;
        info.feeGrowthOutside1X128 = params.feeGrowthGlobal1X128 - info.feeGrowthOutside1X128;
        info.secondsPerLiquidityOutsideX128 = params.secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128;

        {
            uint256 periodSecondsPerLiquidityOutsideX128;
            uint256 periodSecondsPerLiquidityOutsideBeforeX128 = info.periodSecondsPerLiquidityOutsideX128[period];
            if (params.tick <= params.periodStartTick && periodSecondsPerLiquidityOutsideBeforeX128 == 0) {
                periodSecondsPerLiquidityOutsideX128 =
                    params.secondsPerLiquidityCumulativeX128 -
                    periodSecondsPerLiquidityOutsideBeforeX128 -
                    params.endSecondsPerLiquidityPeriodX128;
            } else {
                periodSecondsPerLiquidityOutsideX128 = params.secondsPerLiquidityCumulativeX128 - periodSecondsPerLiquidityOutsideBeforeX128;
            }
            info.periodSecondsPerLiquidityOutsideX128[period] = periodSecondsPerLiquidityOutsideX128;
        }

        info.tickCumulativeOutside = params.tickCumulative - info.tickCumulativeOutside;
        info.secondsOutside = params.time - info.secondsOutside;
        liquidityNet = info.liquidityNet;
    }

    /// @dev Common checks for valid tick inputs.
    function checkTicks(int24 tickLower, int24 tickUpper) external pure {
        require(tickLower < tickUpper, "TLU");
        require(tickLower >= TickMath.MIN_TICK, "TLM");
        require(tickUpper <= TickMath.MAX_TICK, "TUM");
    }
}
        

contracts/interfaces/IERC20Minimal.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Minimal ERC20 interface for Equilibre
/// @notice Contains a subset of the full ERC20 interface that is used in Equilibre V2
interface IERC20Minimal {
    /// @notice Returns the balance of a token
    /// @param account The account for which to look up the number of tokens it has, i.e. its balance
    /// @return The number of tokens held by the account
    function balanceOf(address account) external view returns (uint256);

    /// @notice Transfers the amount of token from the `msg.sender` to the recipient
    /// @param recipient The account that will receive the amount transferred
    /// @param amount The number of tokens to send from the sender to the recipient
    /// @return Returns true for a successful transfer, false for an unsuccessful transfer
    function transfer(address recipient, uint256 amount) external returns (bool);

    /// @notice Returns the current allowance given to a spender by an owner
    /// @param owner The account of the token owner
    /// @param spender The account of the token spender
    /// @return The current allowance granted by `owner` to `spender`
    function allowance(address owner, address spender) external view returns (uint256);

    /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount`
    /// @param spender The account which will be allowed to spend a given amount of the owners tokens
    /// @param amount The amount of tokens allowed to be used by `spender`
    /// @return Returns true for a successful approval, false for unsuccessful
    function approve(address spender, uint256 amount) external returns (bool);

    /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender`
    /// @param sender The account from which the transfer will be initiated
    /// @param recipient The recipient of the transfer
    /// @param amount The amount of the transfer
    /// @return Returns true for a successful transfer, false for unsuccessful
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`.
    /// @param from The account from which the tokens were sent, i.e. the balance decreased
    /// @param to The account to which the tokens were sent, i.e. the balance increased
    /// @param value The amount of tokens that were transferred
    event Transfer(address indexed from, address indexed to, uint256 value);

    /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes.
    /// @param owner The account that approved spending of its tokens
    /// @param spender The account for which the spending allowance was modified
    /// @param value The new allowance from the owner to the spender
    event Approval(address indexed owner, address indexed spender, uint256 value);
}
          

contracts/libraries/FullMath.sol

// SPDX-License-Identifier: MIT
pragma solidity >=0.4.0 <0.8.0;

/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
    /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
    function mulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
        // 512-bit multiply [prod1 prod0] = a * b
        // Compute the product mod 2**256 and mod 2**256 - 1
        // then use the Chinese Remainder Theorem to reconstruct
        // the 512 bit result. The result is stored in two 256
        // variables such that product = prod1 * 2**256 + prod0
        uint256 prod0; // Least significant 256 bits of the product
        uint256 prod1; // Most significant 256 bits of the product
        assembly {
            let mm := mulmod(a, b, not(0))
            prod0 := mul(a, b)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }

        // Handle non-overflow cases, 256 by 256 division
        if (prod1 == 0) {
            require(denominator > 0);
            assembly {
                result := div(prod0, denominator)
            }
            return result;
        }

        // Make sure the result is less than 2**256.
        // Also prevents denominator == 0
        require(denominator > prod1);

        ///////////////////////////////////////////////
        // 512 by 256 division.
        ///////////////////////////////////////////////

        // Make division exact by subtracting the remainder from [prod1 prod0]
        // Compute remainder using mulmod
        uint256 remainder;
        assembly {
            remainder := mulmod(a, b, denominator)
        }
        // Subtract 256 bit number from 512 bit number
        assembly {
            prod1 := sub(prod1, gt(remainder, prod0))
            prod0 := sub(prod0, remainder)
        }

        // Factor powers of two out of denominator
        // Compute largest power of two divisor of denominator.
        // Always >= 1.
        uint256 twos = -denominator & denominator;
        // Divide denominator by power of two
        assembly {
            denominator := div(denominator, twos)
        }

        // Divide [prod1 prod0] by the factors of two
        assembly {
            prod0 := div(prod0, twos)
        }
        // Shift in bits from prod1 into prod0. For this we need
        // to flip `twos` such that it is 2**256 / twos.
        // If twos is zero, then it becomes one
        assembly {
            twos := add(div(sub(0, twos), twos), 1)
        }
        prod0 |= prod1 * twos;

        // Invert denominator mod 2**256
        // Now that denominator is an odd number, it has an inverse
        // modulo 2**256 such that denominator * inv = 1 mod 2**256.
        // Compute the inverse by starting with a seed that is correct
        // correct for four bits. That is, denominator * inv = 1 mod 2**4
        uint256 inv = (3 * denominator) ^ 2;
        // Now use Newton-Raphson iteration to improve the precision.
        // Thanks to Hensel's lifting lemma, this also works in modular
        // arithmetic, doubling the correct bits in each step.
        inv *= 2 - denominator * inv; // inverse mod 2**8
        inv *= 2 - denominator * inv; // inverse mod 2**16
        inv *= 2 - denominator * inv; // inverse mod 2**32
        inv *= 2 - denominator * inv; // inverse mod 2**64
        inv *= 2 - denominator * inv; // inverse mod 2**128
        inv *= 2 - denominator * inv; // inverse mod 2**256

        // Because the division is now exact we can divide by multiplying
        // with the modular inverse of denominator. This will give us the
        // correct result modulo 2**256. Since the precoditions guarantee
        // that the outcome is less than 2**256, this is the final result.
        // We don't need to compute the high bits of the result and prod1
        // is no longer required.
        result = prod0 * inv;
        return result;
    }

    /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    function mulDivRoundingUp(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
        result = mulDiv(a, b, denominator);
        if (mulmod(a, b, denominator) > 0) {
            require(result < type(uint256).max);
            result++;
        }
    }
}
          

contracts/libraries/LiquidityMath.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import "./FullMath.sol";
import "./SafeCast.sol";
import "openzeppelin3/math/Math.sol";

/// @title Math library for liquidity
library LiquidityMath {
    /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
    /// @param x The liquidity before change
    /// @param y The delta by which liquidity should be changed
    /// @return z The liquidity delta
    function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) {
        if (y < 0) {
            require((z = x - uint128(-y)) < x, "LS");
        } else {
            require((z = x + uint128(y)) >= x, "LA");
        }
    }

    /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
    /// @param x The liquidity before change
    /// @param y The delta by which liquidity should be changed
    /// @return z The liquidity delta
    function addDelta256(uint256 x, int256 y) internal pure returns (uint256 z) {
        if (y < 0) {
            require((z = x - uint256(-y)) < x, "LS");
        } else {
            require((z = x + uint256(y)) >= x, "LA");
        }
    }
}
          

contracts/libraries/LowGasSafeMath.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.0;

/// @title Optimized overflow and underflow safe math operations
/// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost
library LowGasSafeMath {
    /// @notice Returns x + y, reverts if sum overflows uint256
    /// @param x The augend
    /// @param y The addend
    /// @return z The sum of x and y
    function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
        require((z = x + y) >= x);
    }

    /// @notice Returns x - y, reverts if underflows
    /// @param x The minuend
    /// @param y The subtrahend
    /// @return z The difference of x and y
    function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        require((z = x - y) <= x);
    }

    /// @notice Returns x * y, reverts if overflows
    /// @param x The multiplicand
    /// @param y The multiplier
    /// @return z The product of x and y
    function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        require(x == 0 || (z = x * y) / x == y);
    }

    /// @notice Returns x + y, reverts if overflows or underflows
    /// @param x The augend
    /// @param y The addend
    /// @return z The sum of x and y
    function add(int256 x, int256 y) internal pure returns (int256 z) {
        require((z = x + y) >= x == (y >= 0));
    }

    /// @notice Returns x - y, reverts if overflows or underflows
    /// @param x The minuend
    /// @param y The subtrahend
    /// @return z The difference of x and y
    function sub(int256 x, int256 y) internal pure returns (int256 z) {
        require((z = x - y) <= x == (y >= 0));
    }
}
          

contracts/libraries/SafeCast.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Safe casting methods
/// @notice Contains methods for safely casting between types
library SafeCast {
    /// @notice Cast a uint256 to a uint128, revert on overflow
    /// @param y The uint256 to be downcasted
    /// @return z The downcasted integer, now type uint160
    function toUint128(uint256 y) internal pure returns (uint128 z) {
        require((z = uint128(y)) == y);
    }

    /// @notice Cast a uint256 to a uint160, revert on overflow
    /// @param y The uint256 to be downcasted
    /// @return z The downcasted integer, now type uint160
    function toUint160(uint256 y) internal pure returns (uint160 z) {
        require((z = uint160(y)) == y);
    }

    /// @notice Cast a int256 to a int128, revert on overflow or underflow
    /// @param y The int256 to be downcasted
    /// @return z The downcasted integer, now type int128
    function toInt128(int256 y) internal pure returns (int128 z) {
        require((z = int128(y)) == y);
    }

    /// @notice Cast a uint256 to a int256, revert on overflow
    /// @param y The uint256 to be casted
    /// @return z The casted integer, now type int256
    function toInt256(uint256 y) internal pure returns (int256 z) {
        require(y < 2 ** 255);
        z = int256(y);
    }
}
          

contracts/libraries/States.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0 <0.9.0;

import "contracts/interfaces/IERC20Minimal.sol";

struct Slot0 {
    // the current price
    uint160 sqrtPriceX96;
    // the current tick
    int24 tick;
    // the most-recently updated index of the observations array
    uint16 observationIndex;
    // the current maximum number of observations that are being stored
    uint16 observationCardinality;
    // the next maximum number of observations to store, triggered in observations.write
    uint16 observationCardinalityNext;
    // the current protocol fee as a percentage of the swap fee taken on withdrawal
    // represented as an integer denominator (1/x)%
    uint8 feeProtocol;
    // whether the pool is locked
    bool unlocked;
}

struct Observation {
    // the block timestamp of the observation
    uint32 blockTimestamp;
    // the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
    int56 tickCumulative;
    // the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
    uint160 secondsPerLiquidityCumulativeX128;
    // whether or not the observation is initialized
    bool initialized;
}

// info stored for each user's position
struct PositionInfo {
    // the amount of liquidity owned by this position
    uint128 liquidity;
    // fee growth per unit of liquidity as of the last update to liquidity or fees owed
    uint256 feeGrowthInside0LastX128;
    uint256 feeGrowthInside1LastX128;
    // the fees owed to the position owner in token0/token1
    uint128 tokensOwed0;
    uint128 tokensOwed1;
    uint256 attachedVeVaraId;
}

struct PeriodExtensionInfo {
    int128 totalVeVaraAmount;
    mapping(bytes32 => ExtensionInfo) positions;
    mapping(uint256 => VeVaraInfo) veVaraInfos;
}

struct VeVaraInfo {
    uint128 timesAttached;
    mapping(bytes32 => uint256) positionExtensionUsedRatio;
}

struct ExtensionInfo {
    uint128 amount;
    int128 veVaraAmount;
    int256 secondsDebtX96;
    bool initialized;
    int160 secondsPerLiquidityPeriodStartX128;
}

// info stored for each initialized individual tick
struct TickInfo {
    // the total position liquidity that references this tick
    uint128 liquidityGross;
    // amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left),
    int128 liquidityNet;
    uint128 cleanUnusedSlot;
    int128 cleanUnusedSlot2;
    // fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
    // only has relative meaning, not absolute — the value depends on when the tick is initialized
    uint256 feeGrowthOutside0X128;
    uint256 feeGrowthOutside1X128;
    // the cumulative tick value on the other side of the tick
    int56 tickCumulativeOutside;
    // the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick)
    // only has relative meaning, not absolute — the value depends on when the tick is initialized
    uint160 secondsPerLiquidityOutsideX128;
    // the seconds spent on the other side of the tick (relative to the current tick)
    // only has relative meaning, not absolute — the value depends on when the tick is initialized
    uint32 secondsOutside;
    // true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0
    // these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks
    bool initialized;
    // secondsPerLiquidityOutsideX128 separated into periods, placed here to preserve struct slots
    mapping(uint256 => uint256) periodSecondsPerLiquidityOutsideX128;
}

// info stored for each period
struct PeriodInfo {
    uint32 previousPeriod;
    int24 startTick;
    int24 lastTick;
    uint160 endSecondsPerLiquidityPeriodX128;
}

// accumulated protocol fees in token0/token1 units
struct ProtocolFees {
    uint128 token0;
    uint128 token1;
}

// Position period and liquidity
struct PositionCheckpoint {
    uint256 period;
    uint256 liquidity;
}

library States {
    bytes32 public constant STATES_SLOT = keccak256("states.storage");

    struct PoolStates {
        address factory;
        address nfpManager;
        address veVara;
        address voter;
        address token0;
        address token1;
        uint24 fee;
        int24 tickSpacing;
        uint128 maxLiquidityPerTick;
        Slot0 slot0;
        mapping(uint256 => PeriodInfo) periods;
        uint256 lastPeriod;
        uint256 feeGrowthGlobal0X128;
        uint256 feeGrowthGlobal1X128;
        ProtocolFees protocolFees;
        uint128 liquidity;
        mapping(int24 => TickInfo) _ticks;
        mapping(int16 => uint256) tickBitmap;
        mapping(bytes32 => PositionInfo) positions;
        mapping(uint256 => PeriodExtensionInfo) extensionInfos;
        mapping(bytes32 => uint256) cleanUnusedSlot;
        Observation[65535] observations;
        mapping(bytes32 => PositionCheckpoint[]) positionCheckpoints;
        uint24 initialFee;
    }

    // Return state storage struct for reading and writing
    function getStorage() internal pure returns (PoolStates storage storageStruct) {
        bytes32 position = STATES_SLOT;
        assembly {
            storageStruct.slot := position
        }
    }

    /// @dev Returns the block timestamp truncated to 32 bits, i.e. mod 2**32. This method is overridden in tests.
    function _blockTimestamp() internal view returns (uint32) {
        return uint32(block.timestamp); // truncation is desired
    }

    /// @dev Get the pool's balance of token0
    /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
    /// check
    function balance0() internal view returns (uint256) {
        PoolStates storage states = getStorage();

        (bool success, bytes memory data) = states.token0.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
        require(success && data.length >= 32);
        return abi.decode(data, (uint256));
    }

    /// @dev Get the pool's balance of token1
    /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
    /// check
    function balance1() internal view returns (uint256) {
        PoolStates storage states = getStorage();

        (bool success, bytes memory data) = states.token1.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
        require(success && data.length >= 32);
        return abi.decode(data, (uint256));
    }
}
          

contracts/libraries/TickMath.sol

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0 <0.8.0;

/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
    /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
    int24 internal constant MIN_TICK = -887272;
    /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
    int24 internal constant MAX_TICK = -MIN_TICK;

    /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
    uint160 internal constant MIN_SQRT_RATIO = 4295128739;
    /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
    uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;

    /// @notice Calculates sqrt(1.0001^tick) * 2^96
    /// @dev Throws if |tick| > max tick
    /// @param tick The input tick for the above formula
    /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
    /// at the given tick
    function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
        uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
        require(absTick <= uint256(MAX_TICK), "T");

        uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
        if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
        if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
        if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
        if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
        if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
        if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
        if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
        if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
        if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
        if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
        if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
        if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
        if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
        if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
        if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
        if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
        if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
        if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
        if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;

        if (tick > 0) ratio = type(uint256).max / ratio;

        // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
        // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
        // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
        sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
    }

    /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
    /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
    /// ever return.
    /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
    /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
    function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
        // second inequality must be < because the price can never reach the price at the max tick
        require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, "R");
        uint256 ratio = uint256(sqrtPriceX96) << 32;

        uint256 r = ratio;
        uint256 msb = 0;

        assembly {
            let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
            msb := or(msb, f)
            r := shr(f, r)
        }
        assembly {
            let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
            msb := or(msb, f)
            r := shr(f, r)
        }
        assembly {
            let f := shl(5, gt(r, 0xFFFFFFFF))
            msb := or(msb, f)
            r := shr(f, r)
        }
        assembly {
            let f := shl(4, gt(r, 0xFFFF))
            msb := or(msb, f)
            r := shr(f, r)
        }
        assembly {
            let f := shl(3, gt(r, 0xFF))
            msb := or(msb, f)
            r := shr(f, r)
        }
        assembly {
            let f := shl(2, gt(r, 0xF))
            msb := or(msb, f)
            r := shr(f, r)
        }
        assembly {
            let f := shl(1, gt(r, 0x3))
            msb := or(msb, f)
            r := shr(f, r)
        }
        assembly {
            let f := gt(r, 0x1)
            msb := or(msb, f)
        }

        if (msb >= 128) r = ratio >> (msb - 127);
        else r = ratio << (127 - msb);

        int256 log_2 = (int256(msb) - 128) << 64;

        assembly {
            r := shr(127, mul(r, r))
            let f := shr(128, r)
            log_2 := or(log_2, shl(63, f))
            r := shr(f, r)
        }
        assembly {
            r := shr(127, mul(r, r))
            let f := shr(128, r)
            log_2 := or(log_2, shl(62, f))
            r := shr(f, r)
        }
        assembly {
            r := shr(127, mul(r, r))
            let f := shr(128, r)
            log_2 := or(log_2, shl(61, f))
            r := shr(f, r)
        }
        assembly {
            r := shr(127, mul(r, r))
            let f := shr(128, r)
            log_2 := or(log_2, shl(60, f))
            r := shr(f, r)
        }
        assembly {
            r := shr(127, mul(r, r))
            let f := shr(128, r)
            log_2 := or(log_2, shl(59, f))
            r := shr(f, r)
        }
        assembly {
            r := shr(127, mul(r, r))
            let f := shr(128, r)
            log_2 := or(log_2, shl(58, f))
            r := shr(f, r)
        }
        assembly {
            r := shr(127, mul(r, r))
            let f := shr(128, r)
            log_2 := or(log_2, shl(57, f))
            r := shr(f, r)
        }
        assembly {
            r := shr(127, mul(r, r))
            let f := shr(128, r)
            log_2 := or(log_2, shl(56, f))
            r := shr(f, r)
        }
        assembly {
            r := shr(127, mul(r, r))
            let f := shr(128, r)
            log_2 := or(log_2, shl(55, f))
            r := shr(f, r)
        }
        assembly {
            r := shr(127, mul(r, r))
            let f := shr(128, r)
            log_2 := or(log_2, shl(54, f))
            r := shr(f, r)
        }
        assembly {
            r := shr(127, mul(r, r))
            let f := shr(128, r)
            log_2 := or(log_2, shl(53, f))
            r := shr(f, r)
        }
        assembly {
            r := shr(127, mul(r, r))
            let f := shr(128, r)
            log_2 := or(log_2, shl(52, f))
            r := shr(f, r)
        }
        assembly {
            r := shr(127, mul(r, r))
            let f := shr(128, r)
            log_2 := or(log_2, shl(51, f))
            r := shr(f, r)
        }
        assembly {
            r := shr(127, mul(r, r))
            let f := shr(128, r)
            log_2 := or(log_2, shl(50, f))
        }

        int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number

        int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
        int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);

        tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
    }
}
          

openzeppelin3/math/Math.sol

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow, so we distribute
        return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
    }
}
          

Compiler Settings

{"outputSelection":{"*":{"*":["*"],"":["*"]}},"optimizer":{"runs":1,"enabled":true},"metadata":{"bytecodeHash":"none"},"libraries":{}}
              

Contract ABI

[{"type":"function","stateMutability":"pure","outputs":[],"name":"checkTicks","inputs":[{"type":"int24","name":"tickLower","internalType":"int24"},{"type":"int24","name":"tickUpper","internalType":"int24"}]},{"type":"function","stateMutability":"pure","outputs":[{"type":"uint128","name":"","internalType":"uint128"}],"name":"tickSpacingToMaxLiquidityPerTick","inputs":[{"type":"int24","name":"tickSpacing","internalType":"int24"}]}]
              

Contract Creation Code

0x610531610026600b82828239805160001a60731461001957fe5b30600052607381538281f3fe730000000000000000000000000000000000000000301460806040526004361061004b5760003560e01c806382c66f8714610050578063bf7ca94e14610079578063d267849c146100a6575b600080fd5b61006361005e3660046103b4565b6100bb565b6040516100709190610510565b60405180910390f35b81801561008557600080fd5b50610099610094366004610428565b610127565b60405161007091906104ab565b6100b96100b43660046103d5565b610321565b005b60008082600281900b620d89e719816100d057fe5b05029050600083600281900b620d89e8816100e757fe5b0502905060008460020b83830360020b816100fe57fe5b0560010190508062ffffff166001600160801b0380168161011b57fe5b0493505050505b919050565b600080838161013960208601866103b4565b60020b60020b81526020019081526020016000209050600062093a808460e00160208101906101689190610487565b63ffffffff168161017557fe5b60028401805460208801350390556003840180546040880135039055600484015491900463ffffffff169150600160381b90046001600160a01b03166101c16080860160608701610460565b600484018054600160381b600160d81b031916600160381b939092036001600160a01b031692909202179055600081815260058301602052604081205461020e60c0870160a088016103b4565b60020b61021e60208801886103b4565b60020b1315801561022d575080155b1561025a576080860180359082906102489060608a01610460565b6001600160a01b031603039150610278565b8061026b6080880160608901610460565b6001600160a01b03160391505b506000828152600584016020526040902055600482015460060b6102a260e0860160c08701610407565b60048401805466ffffffffffffff191666ffffffffffffff9390920360060b929092161790819055600160d81b900463ffffffff166102e8610100860160e08701610487565b60048401805463ffffffff60d81b1916600160d81b9390920363ffffffff16929092021790555054600160801b9004600f0b9392505050565b8060020b8260020b1261034f5760405162461bcd60e51b8152600401610346906104b9565b60405180910390fd5b620d89e719600283900b12156103775760405162461bcd60e51b8152600401610346906104f3565b620d89e8600282900b131561039e5760405162461bcd60e51b8152600401610346906104d6565b5050565b8035600281900b811461012257600080fd5b6000602082840312156103c5578081fd5b6103ce826103a2565b9392505050565b600080604083850312156103e7578081fd5b6103f0836103a2565b91506103fe602084016103a2565b90509250929050565b600060208284031215610418578081fd5b81358060060b81146103ce578182fd5b60008082840361012081121561043c578283fd5b83359250610100601f1982011215610452578182fd5b506020830190509250929050565b600060208284031215610471578081fd5b81356001600160a01b03811681146103ce578182fd5b600060208284031215610498578081fd5b813563ffffffff811681146103ce578182fd5b600f9190910b815260200190565b602080825260039082015262544c5560e81b604082015260600190565b60208082526003908201526254554d60e81b604082015260600190565b602080825260039082015262544c4d60e81b604082015260600190565b6001600160801b039190911681526020019056fea164736f6c6343000706000a

Deployed ByteCode

0x7301f97a36917c2b76a43924368a97dcbd051a9a75301460806040526004361061004b5760003560e01c806382c66f8714610050578063bf7ca94e14610079578063d267849c146100a6575b600080fd5b61006361005e3660046103b4565b6100bb565b6040516100709190610510565b60405180910390f35b81801561008557600080fd5b50610099610094366004610428565b610127565b60405161007091906104ab565b6100b96100b43660046103d5565b610321565b005b60008082600281900b620d89e719816100d057fe5b05029050600083600281900b620d89e8816100e757fe5b0502905060008460020b83830360020b816100fe57fe5b0560010190508062ffffff166001600160801b0380168161011b57fe5b0493505050505b919050565b600080838161013960208601866103b4565b60020b60020b81526020019081526020016000209050600062093a808460e00160208101906101689190610487565b63ffffffff168161017557fe5b60028401805460208801350390556003840180546040880135039055600484015491900463ffffffff169150600160381b90046001600160a01b03166101c16080860160608701610460565b600484018054600160381b600160d81b031916600160381b939092036001600160a01b031692909202179055600081815260058301602052604081205461020e60c0870160a088016103b4565b60020b61021e60208801886103b4565b60020b1315801561022d575080155b1561025a576080860180359082906102489060608a01610460565b6001600160a01b031603039150610278565b8061026b6080880160608901610460565b6001600160a01b03160391505b506000828152600584016020526040902055600482015460060b6102a260e0860160c08701610407565b60048401805466ffffffffffffff191666ffffffffffffff9390920360060b929092161790819055600160d81b900463ffffffff166102e8610100860160e08701610487565b60048401805463ffffffff60d81b1916600160d81b9390920363ffffffff16929092021790555054600160801b9004600f0b9392505050565b8060020b8260020b1261034f5760405162461bcd60e51b8152600401610346906104b9565b60405180910390fd5b620d89e719600283900b12156103775760405162461bcd60e51b8152600401610346906104f3565b620d89e8600282900b131561039e5760405162461bcd60e51b8152600401610346906104d6565b5050565b8035600281900b811461012257600080fd5b6000602082840312156103c5578081fd5b6103ce826103a2565b9392505050565b600080604083850312156103e7578081fd5b6103f0836103a2565b91506103fe602084016103a2565b90509250929050565b600060208284031215610418578081fd5b81358060060b81146103ce578182fd5b60008082840361012081121561043c578283fd5b83359250610100601f1982011215610452578182fd5b506020830190509250929050565b600060208284031215610471578081fd5b81356001600160a01b03811681146103ce578182fd5b600060208284031215610498578081fd5b813563ffffffff811681146103ce578182fd5b600f9190910b815260200190565b602080825260039082015262544c5560e81b604082015260600190565b60208082526003908201526254554d60e81b604082015260600190565b602080825260039082015262544c4d60e81b604082015260600190565b6001600160801b039190911681526020019056fea164736f6c6343000706000a